Vysvětlení přestupných let!

Dub 27, 2021
admin

Tento článek je upravenou a aktualizovanou verzí článku, který jsem napsal v roce 2008 a poté aktualizoval pro rok 2012. Pokud nedojde ke kolosálnímu dopadu asteroidu nebo k Trumpově prezidentství, budu tu pravděpodobně i v roce 2020. Ale ne v roce 2200. I kdyby tu moje plovoucí hlava ve sklenici stále byla, bude to jedno, jak uvidíte, když budete číst dál.

Reklama

Poznámka: Tento příspěvek obsahuje matematiku. A to docela dost. Ale je to vlastně jen aritmetika – desetinná čísla a násobení. Pokud jste matfyzáci, přeskočte na konec, ale v číslech mi budete muset věřit.

Pokud jste matfyzák a pedant, pak se můžete rozčilovat nad mým ignorováním významných číslic níže. V tomto případě je však důležitá mantisa, protože to, co zde děláme, je variace modulové matematiky; skutečný zlomek dne, který zbývá, je to, co se sčítá, a nezáleží na tom, kolik je celých dnů, jakmile se v kalendáři uplatní opravy přestupného dne. Proto jsem všechna čísla ponechal na čtyřech desetinných místech (pokud nekončí nulou) a sigfigs jsem ignoroval. Ano, vede to k určitým zaokrouhlovacím chybám, ale v časovém rozmezí, o kterém zde mluvíme, na nich příliš nezáleží.

Reklama

OK, připraveni? Pojďme počítat!

Když jsem byl malý, měl jsem kamaráda, který měl narozeniny 29. února. Rýpal jsem si do něj, že mu jsou teprve tři roky, a on se viditelně ovládal, aby mi nedal pěstí. Zřejmě ten vtip slýchával často.

Reklama

Samozřejmě mu bylo ve skutečnosti dvanáct. Ale protože 29. únor je přestupný den, přichází jen jednou za čtyři roky.

Ale proč je přestupný den jen jednou za čtyři roky?

Reklama

Proč je něco něco? Protože astronomie!

Dobře, možná jsem zaujatý, ale v tomto případě je to pravda. Máme dvě základní časové jednotky: den a rok. Ze všech každodenních měr, které používáme, jsou to jediné dvě založené na konkrétních fyzikálních událostech: doba, za kterou se Země jednou otočí kolem své osy, a doba, za kterou Země oběhne kolem Slunce. Všechny ostatní jednotky času, které používáme (sekunda, hodina, týden, měsíc), jsou spíše libovolné. Je to výhodné, ale nejsou definovány nezávislými, nearbitrárními událostmi.*

Reklama

Zemi trvá zhruba 365 dní, než jednou oběhne kolem Slunce. Kdyby to bylo přesně 365 dní, měli bychom vystaráno! Naše kalendáře by byly každý rok stejné a neměli bychom žádné starosti.

Ale tak to není. Délka dne a roku nejsou přesnými násobky, nedělí se rovnoměrně. Ve skutečnosti je v roce asi 365,25 dne. Tento zlomek navíc je rozhodující; sčítá se. Každý rok je náš kalendář zkreslený asi o čtvrtinu dne, což je 6 hodin navíc, které tam jen tak leží a zbývají.

Po roce je kalendář zkreslený o ¼ dne. Po dvou letech je to půl dne mimo, pak ¾ a po čtyřech letech je kalendář mimo zhruba o celý den:

4 roky při 365 (kalendářních) dnech/rok = 1 460 dní, ale

Reklama

4 roky při 365,25 (fyzických) dnech/rok = 1 461 dní

Po čtyřech letech je tedy kalendář pozadu o den. Země se za ty čtyři roky otočila o jeden čas navíc a my to musíme dohnat. Abychom tedy kalendář opět vyrovnali, přidáme jednou za čtyři roky tento den zpět. Únor je nejkratší měsíc (kvůli nějakým císařským vylomeninám), takže tam ten den přilepíme, nazveme ho 29. únor – přestupný den – a všichni jsou spokojení.

Až na to, že je tu stále problém. Lhal jsem vám (no, ne tak docela, ale pojďte se mnou). Rok nemá přesně 365,25 dne. Kdyby tomu tak bylo, každé čtyři roky by kalendář dohnal skutečnou rotaci Země a bylo by to v pořádku.

Ale není, a tady začíná ta legrace.

Reklama

Náš oficiální den je dlouhý 86 400 sekund. Nebudu zabíhat do podrobností o délce samotného roku (pokud vás to zajímá, můžete si při čtení o tom zamotat mozek), ale rok, který nyní používáme, se nazývá tropický rok a je dlouhý 365,2422 dne. Není to přesné, ale zaokrouhlujme na čtyři desetinná místa, aby se nám neroztekl mozek.

Je zřejmé, že 365,2422 je o něco méně než 365,25 (asi o 11 minut). Na tom ale sotva záleží, že?

Vlastně ano, záleží. Časem se i ten malý kousek nasčítá. Například po čtyřech letech nemáme 1 461 fyzických dnů, ale máme:

4 roky při 365,2422 (skutečných) dnech/rok = 1460,9688 dnech

Reklama

To znamená, že když za každé čtyři roky přidáme celý den, přidáváme příliš mnoho! Nevidím ale žádný jednoduchý způsob, jak do našeho kalendáře přidat jen 0,9688 dne, takže přidání celého dne je pochopitelné.

Jak to tedy dopadne? Přidáním přestupného dne každé čtyři roky se kalendář hodně přiblíží přesnosti, ale stále není přesně na míru; stále je jen o chlup mimo. Tentokrát předbíhá fyzickou rotaci Země, protože jsme přidali celý den, což je příliš mnoho. O kolik dopředu?

No, přidali jsme jeden celý den místo 0,9688 dne, což je rozdíl 0,0312 dne. To je 0,7488 hodiny, což je velmi blízko 45 minutám.

To není nic hrozného, ale je vidět, že se nakonec opět dostaneme do problémů. Každé čtyři roky kalendář získá 45 minut. Až budeme mít 32 přestupných let (což je 4 x 32 = 128 let kalendářního času), budeme opět o den mimo, protože 32 x 0,0312 dne je velmi blízko celému dni! Je to jen o pár minut, což je docela dobré.

Reklama

Takže musíme opět upravit náš kalendář. Stačilo by vynechat přestupný den jeden rok z každých 128 a kalendář by byl velmi blízko přesnosti. Ale to je otrava. Kdo si pamatuje interval 128 let?

Místo toho bylo tedy rozhodnuto vynechat přestupný den každých 100 let, což se lépe sleduje. Takže každé století můžeme přestupný den vynechat, aby se kalendář blížil tomu, co dělá Země, a všichni jsou spokojení.

Až na to, že je tu stále problém. Protože to děláme každých 100 let, stále se nepřizpůsobujeme správně. Těch 0,0312 dne jsme přidali 25krát, ne 32krát, a to je málo.

Přesněji řečeno, po sto letech bude kalendář napřed o:

Reklama

25 x 0,0312 dne = 0,7800 dne

To je téměř celý den. Samozřejmě, když vidíte, čím vším jsme si už prošli, odpustili byste si pocit předtuchy, že to nebude fungovat ideálně. A měli byste pravdu. K tomu se ještě dostaneme.

Ale nejdřív je tu ještě jeden způsob, jak o tom všem přemýšlet, který sem hodím jen pro kontrolu matematiky. Po 100 letech budeme mít 25 přestupných let a 75 nepřestupných let. To je celkem:

(25 přestupných let x 366 dní/přestupný rok) + (75 let x 365 dní/rok) = 36 525 kalendářních dní

Reklama

Ve skutečnosti jsme však měli 100 let po 365,2422 dnech, tedy 36 524,22 dne. Nyní jsme tedy mimo:

36 525 – 36524,22 = 0,78 dne

což je v rámci zaokrouhlovacích chyb stejné číslo, jaké jsem dostal výše. Woohoo. Matematika funguje.

Print
QED.

/Marina Sun

Reklama

Kde jsem to skončil? Aha, jasně. Po 100 letech tedy kalendář získal více než ¾ dne na fyzickém počtu dní v roce, když každé čtyři roky přidáme jeden celý den. To znamená, že musíme kalendář zastavit a nechat rotaci Země dohnat. Za tímto účelem jednou za století nepřidáváme přestupný den.

Aby to bylo jednodušší (protože je to potřeba), děláme to jen v letech dělitelných stovkou. Takže roky 1700, 1800 a 1900 nebyly přestupné. Nepřidali jsme den navíc a kalendář se o to více přiblížil skutečnosti.

Ale všimněte si, říká se zlým úšklebkem, že jsem se nezmínil o roce 2000. Proč ne?

Protože, jak jsem řekl před chvílí, ani tento poslední krok nestačí. Nezapomeň, že po 100 letech se kalendář stále ještě neodchýlil o celé číslo. Je napřed o 0,7800 dne. Takže když odečteme jeden den tím, že nebudeme mít přestupný rok každé století, kompenzujeme to příliš; odečítáme příliš mnoho. Teď jsme pozadu o:

Reklama

1 – 0,7800 dne = 0,2200 dne

Arg! Každých 100 let tedy kalendář zaostává o 0,22 dne. Pokud jste mě předběhli (a opravdu, v tuto chvíli se sotva držím na uzdě), možná si řeknete: „Hej! To číslo, když se vynásobí pěti, je velmi blízko celému dni! Takže bychom měli přestupný den vrátit každých 500 let, a pak bude kalendář zase velmi blízko k tomu, aby byl správný!“ Ale to je přece jasné.

Co na to říct? Jste zjevně velmi chytrý a logicky uvažující člověk. Bohužel lidé, kteří mají na starosti kalendáře, nejsou jako vy. Ti se vydali jinou cestou.

Jak? Místo aby přestupný den přidali zpětně každých 500 let, rozhodli se přidat ho každých 400 let! Proč? No, obecně platí, že když je něco složitější způsob, jak to udělat, udělá se to tak.

Reklama

Takže po 400 letech jsme čtyřikrát zkazili kalendář o 0,22 dne (jednou za 100 let po dobu 400 let) a po čtyřech stoletích je kalendář pozadu o

4 x 0,22 dne = 0,88 dne

To je skoro celý den, tak s tím běžme. To znamená, že každých 400 let můžeme do kalendáře zázračně přidat zpět 29. únor a kalendář se opět nepatrně přiblíží přesnosti.

Pro kontrolu si to spočítejme jinak. Až do února posledního roku ve 400letém cyklu jsme měli 303 nepřestupných let a 96 přestupných let (nezapomeňte, že 400. rok ještě nepočítáme).

Reklama

(96 přestupných let x 366 dní/přestupný rok) + (303 let x 365 dní/rok) = 145 731 kalendářních dní

Pokud tedy ze 400. roku neuděláme přestupný rok, přidáme dalších 365 dní a získáme celkem 146 096 dní.

Ale to už jsme opravdu měli:

400 x 365,2422 dne = 146 096,88 dne

Reklama

Takže jsem měl pravdu! Po 400 letech máme zpoždění 0,88 dne, takže porušíme pravidlo „každých 100 let“ a přidáme každých 400 let jeden celý den a kalendář se mnohem více přiblíží tomu, aby byl podle plánu.

Vidíme, že zbytek je 0,88 dne, což souhlasí s předchozím výpočtem, a tak jsem si jistý, že jsem to udělal správně. (Uff!)

Ale nemůžu to nechat být. Musím podotknout, že ani po tom všem není kalendář v tuto chvíli ještě úplně přesný, protože teď jsme zase napřed. Každých 400 let jsme přidali celý den, zatímco jsme měli přidat jen 0,88 dne, takže jsme teď napřed o:

1 – 0,88 dne = 0,12 dne.

Reklama

Zvláštní je, že si s tím nikdo nedělá starosti. Neexistuje žádné oficiální pravidlo pro přestupné dny s cykly většími než 400 let. Myslím, že je to nesmírně ironické, protože kdybychom udělali ještě jeden krok, mohli bychom kalendář udělat extrémně přesný. Jak?

Částka, o kterou se každých 400 let odchýlíme, je téměř přesně 1/8 dne! Takže po 3 200 letech máme za sebou 8 z těchto 400letých cyklů, takže jsme napřed o:

8 x 0,12 dne = 0,96 dne

Kdybychom pak každých 3 200 let přestupný den z kalendáře opět vynechali, byli bychom pozadu jen o 0,04 dne! To je mnohem lepší než jakákoli jiná úprava, kterou jsme dosud provedli. Nevěřím, že jsme přestali dělat opravy u 400letého cyklu.

Reklama

Ale stejně, hurá, máme to za sebou! Nyní se konečně můžeme podívat, jak funguje pravidlo přestupného roku:

Co dělat, abychom zjistili, zda je přestupný rok, nebo ne:

Každé čtyři roky přidáme přestupný den, kromě každých 100 let, kromě každých 400 let.

Jinými slovy…

Reklama

Pokud je rok dělitelný 4, pak je přestupný, NENÍ-li

zároveň dělitelný 100, pak přestupný není, NENÍ-li dále

rok dělitelný 400, pak přestupný je.

Takže rok 1996 byl přestupný, ale roky 1997, 1998 a 1999 přestupné nebyly. Rok 2000 byl přestupný, protože přestože je dělitelný 100, je dělitelný i 400. To znamená, že rok 2000 byl přestupný.

Reklama

Roky 1700, 1800 a 1900 přestupné nebyly, ale rok 2000 ano. Rok 2100 přestupný nebude, ani 2200, ani 2300. Ale rok 2400 jím bude.

Celou tuhle záležitost s 400 lety začal v roce 1582 papež Řehoř XIII. To je dost blízko roku 1600 (který byl přestupný!), takže podle mě by rok 4800 přestupný být neměl, a pak bude kalendář oproti rotaci Země vychýlený o necelou minutu. To je působivé.

Ale kdo mě poslouchá? Pokud jsi došel až sem, aniž by sis vystřelil mozkovnu, pak mě asi posloucháš. Tohle všechno je podle mě zábava, a jestli jsi tu se mnou pořád, pak toho o přestupných letech víš stejně jako já.

Což je asi moc. Jediné, co opravdu potřebujete vědět, je, že letošní rok 2016 je přestupný a ještě nějakou dobu jich budeme mít spoustu. Jestli chcete, můžete si projít mé výpočty a zkontrolovat mě…

Reklama

Nebo mi prostě můžete věřit. Říkejte tomu skok víry.

Bonus: V neděli jsme spustili video, které celou věc zjednodušuje na to, že na vás tři minuty křičím čísla. Užijte si to:

*Ano, měsíc je založen na cyklech Měsíce, ale neexistuje žádná skutečná definice „měsíce“, a proto se jejich délka různí.

Napsat komentář

Vaše e-mailová adresa nebude zveřejněna.