pH i CH3COOH + HCl-lösning (bör inte vara en buffert)
Och sker det någon reaktion som jag inte är medveten om?
Det finns tre reaktioner, och du känner förmodligen till dem alla:
$$\tag{1}\ce{H2O(l) <=> H+(aq) + OH-(aq)}$$$
$$\tag{2}\ce{HCl(aq) -> H+(aq) + Cl-(aq)}$$$
$$\tag{3}\ce{Ch3COOH(aq) <=> H+(aq) + CH3COO-(aq)}$$$
Koncentrationen av $\ce{H+}$ i dessa tre reaktioner är densamma eftersom alla sker i samma fas. Så vad som händer i reaktionerna (1) och (2) påverkar jämvikten i reaktion (3).
Kan jag helt enkelt hitta det som frigörs vid reaktionen av CH3COOH med vatten och lägga till det som frigörs av HCl, lägga till de två koncentrationerna och sedan beräkna pH på det sättet?
Nej det kan du inte, för om du går tillbaka till reaktion (3) är du inte längre i jämvikt. För att undvika att försöka fixa en jämvikt samtidigt som du förstör en annan finns det två strategier:
a) Sätt in allt i ett system av ekvationer och lös dem på en gång (föredragen metod om du använder en ekvationslösare).
b) Börja med de större arterna och bortse från de mindre arterna och reaktioner som inte påverkar de större arterna särskilt mycket. Gå sedan vidare till dessa andra reaktioner och de mindre arterna. Detta är att föredra när du måste göra beräkningarna på papper och inte behöver den exakta lösningen.
Det ungefärliga svaret
Efter att ha blandat och ignorerat alla syrans dissociationsreaktioner är koncentrationerna följande:
c(ättiksyra) = 50 / 125 * 0,3 M = 0,12 M
c(saltsyra) = 75 / 125 * 0.2 = 0,12 M
Så här är stegen:
- Låt saltsyra dissociera och få vätejonkoncentration och pH
- Kontrollera om ättiksyra dissocieras märkbart
- Kontrollera om vatten dissocieras märkbart
För det första steget får vi = 0,12 M och pH = 0,92. Dessa är preliminära eftersom vi inte lät de andra syrorna (vatten och ättiksyra) dissociera.
För det andra steget är vi inte i jämvikt ännu (ingen acetat ännu). pH är dock mycket lågt jämfört med ättiksyrans pKa, så om inte pH förändras mycket kommer den inte att dissociera särskilt mycket om inte pH förändras. Låt oss försöka beräkna acetatkoncentrationen under förutsättning att förändringen i koncentrationen av ättiksyra och vätejoner är försumbar.
$$$ = K_a * / \ce{} = \pu{1.8e-5} * 0,12 / 0,12$$$
Så vi gör inget stort misstag om vi säger att koncentrationerna av ättiksyra och vätejoner inte förändrades mycket på grund av reaktion 2. Om vi vill kan vi uppdatera vätejonkoncentrationen från 0,12 M till 0,120018 M.
För det tredje steget gör vi det vi alltid gör när pH är väsentligt surt. Vi räknar bara ut hydroxidkoncentrationen och antar att vätejonkoncentrationen inte påverkas särskilt mycket av vattendissociation. Det blir $\pu{8.3e-14}$. Om vi vill kan vi uppdatera vätejonkoncentrationen från 0,120018 M till 0,120018000000013 M och ett pH på 0,92075. (Inget av detta är meningsfullt eftersom vi bara hade 2 signifikanta siffror för ättiksyrans dissociationskonstant.)
Eftersom vi antog en vätejonkoncentration på 0,12 M för det andra steget och 0,120018 M för det tredje, även om detta inte är helt sant, är reaktionerna (2) och (3) inte helt i jämvikt för de koncentrationer vi beräknade. Det goda är att det i de flesta fall inte spelar någon roll.